
Janus: A User-Level TCP Stack for Processing 40
Million Concurrent TCP Connections
Chao Zheng∗†, Qi Tang§, Qiuwen Lu∗, Jie Li∗†, Zhou Zhou∗ and Qinyun Liu∗

∗Institute of Information Engineering, Chinese Academy of Sciences
†School of Cyber Security, University of Chinese Academy of Sciences

‡Tencent Inc.
Email:{zhengchao}@iie.ac.cn

Abstract—C10M is an Internet scalability problem
regarding how to handle 10 million simultaneous TCP
connections on a web server. Although kernel- and user-
level approaches have been proposed to increase TCP
stack scalability on multicore systems, C10M is still an
open problem.

In this paper we present Janus, a high-performance
user-level TCP stack that focuses on serving massive
TCP connections. In addition to adopting well-known
techniques, our design (1) separates packet I/O cores
from TCP processing cores to achieve high scalability
and flexibility on a multicore system and (2) lets each
application run as a per-connection coroutine together
with a packet processing loop, which greatly improves
cache affinity and saves memory. We demonstrate that
Janus can accept 1.86 million new connections per
second while maintaining 40 million concurrent connec-
tions and significantly outperforms Linux and state-of-
the-art user-space network stacks in both throughput
and connection concurrency.

I. Introduction

With the proliferation of the Internet, websites in the
Alexa top 100 have huge numbers of users. Furthermore,
emerging protocols such as HTTP/2 [4] and websocket
[9] show a trend of using persistent TCP connections
and thereby improving response times. As a result, web
servers must serve massive numbers of concurrent TCP
connections, especially web proxies, CDN (Content Deliv-
ery Network) cache servers, and so on. A decade after the
C10k problem was solved, Robert Graham [10] posed the
C10M challenge: how to handle 10,000,000 simultaneous
TCP connections on a web server. To achieve C10M
scalability, a network stack implementation must support
fast packet processing, multi-core scalability, and resource
efficiency. For the rigorous standard, the C10M is still an
open problem. As far as we know, no approach to date
has simultaneously met the requirements of concurrency
and an acceptable new connection establishment rate. For
example, the Migratory Data Server [20] can handle 12
million long connections, but with a very low message
rate of sending each connection a 512-byte message every
minute, and StackMap [28] has achieved a 200 µs latency,

Qi Tang’s work was done while he was a graduate student at IIE.
Qinyun Liu is the corresponding author.

but the number of concurrent connections is limited to
100.

In this paper, we present Janus, a high-performance,
user-level TCP stack that focuses on serving a massive
number of TCP connections. In addition to adopting well-
known techniques, such as the user-level stack, with noth-
ing shared, no copying, and batching, Janus implements
two distinct approaches to achieve 40 million concurrent
connections:
- Janus separates packet I/O cores from TCP processing

cores on a multicore system to achieve high scalability
and flexibility. Through a specialized TCP load bal-
ancing algorithm called the consistent stream balancer
(CSB), the workloads of the TCP processing cores can
be adjusted dynamically.

- The application runs as a per-connection coroutine in
the TCP processing thread to secure data locality, which
also reduces per-connection memory usage.

In our benchmark tests on an x86 server with 8 CPU cores
and 64B messages, we show that Janus’ new connection
rate outperforms state-of-the-art user-level stacks: it has
3.9× the connection rate of the Linux networking stack
(kernel 3.10.0) and 1.8× that of mTCP [14]. With 10
CPU cores and 1kB messages, Janus can simultaneously
achieve the performance shown in Table I, which meets
the concurrency and new connection rate requirements of
C10M.

TABLE I: C10M requirements and Janus’s performance
with 10 CPU cores and 1kB messages.

C10M Janus

Concurrent Connections 10,000,000 40,000,000
New Connections 1,000,000/s 1,670,000/s
Bandwidth 10 gigabits/s 20 gigabits/s
Packets Per Second 10,000,000/s 7,600,000/s
Latency1 10µs 230µs
Jitter 10µs 18µs

II. Related Work
In this section, we discuss current research on high-

performance TCP I/O. This research falls into two areas:
1The latency of connection establishment three-way handshake.

optimizing the traditional kernel and bypassing the kernel.
Optimization of the traditional kernel has the greatest

generalizability with respect to various protocol features.
In addition, some approaches also retain compatibility
with existing software, for the modifications occur beneath
the BSD socket API. Recent studies have proposed various
solutions to address inefficiencies in multicore systems,
including the lack of connection locality [11], [16], [23],
a shared file descriptor space [17], inefficient packet pro-
cessing [28], and heavy system call overhead [11].

Although these proposals have addressed several short-
comings in the kernel stack, there are system call and
context switching overheads that the traditional kernel
cannot avoid. Moreover, recently emerging high-speed
packet I/O frameworks such as DPDK [1], netmap [26],
and PF RING [22] provide unprecedented network per-
formance for applications. Therefore, separating network-
ing stacks from the traditional kernel has become more
attractive, as this eliminates the previously mentioned
overheads. For example, IX [3] and Arrakis [24] bypass
the traditional kernel with a newly designed data plane
running at the kernel level, thereby achieving high I/O
performance. MultiStack [12] endeavors to ease the deploy-
ment of new protocols, but scalability for massive TCP
connections is not considered. SandStorm [18] attempts
to build highly specialized, application-specific stacks to
achieve high throughput, but it is clearly not designed
for massive connections—the testing ended at 80 concur-
rent connections. mTCP [14] addresses the performance
of short-lived TCP connections on multicore systems. It
implements a per-core management structure at the user
level and uses packet batching to amortize costs. As a
result, mTCP can accept 0.8 million short-lived TCP
connections per second and achieves 6Gbps throughput.

While these approaches eliminate context-switching
overheads, taken alone they do not eliminate the difficult
tradeoffs between concurrency and user friendliness. More
specifically, the scalability of creating and maintaining
millions of concurrent connections at the same time is
barely considered. Indeed, short TCP connections and
long connections can coexist on the same server, e.g., a
chat server [25]. Moreover, on these approaches, optimiza-
tion of application interfaces is limited to callbacks and
event queues, which are either difficult to use or degenerate
the cache affinity.

III. Janus’s Architecture
The main goal of Janus is to build a highly scalable TCP

stack on multicore systems that can handle over 40 million
concurrent connections and at the same time provide user-
friendly APIs. As shown in Figure 1, the packet I/O
runs on several independent threads that send and receive
packets via a DPDK Poll Mode Driver (PMD), and TCP
flows are dispatched to the remaining cores, which execute
the TCP stacks and the server side applications running on
top of them. The TCP processing cores run all stages that

Application
TCP

Processing

R

T

NICs

Shared

Memory

threads

Application
TCP

Processing

R

T

Packet I/O

Process 1

Coroutine APIPer Thread Structure

C
S

B

DPDK PMD
TX/RX

Buffer pool

Control Plane ARPstat

Workload

Management

Process N

policy

Fig. 1: Janus Design Overview.

are needed to enqueue and dequeue rings to completion, in-
terleaving protocol processing and application coroutines
at well-defined transition points. The load balancing algo-
rithm CSB dispatches flows to the different cores in such a
way that a single TCP flow will always be handled by the
same core. The control plane monitors TCP performance
and adjusts the workload between TCP processing threads
by manipulating the CSB. Packet buffers are located in
shared memory, so access by multiple processes is allowed.

In this section, we introduce three key components
that enable Janus’s scalability for 40 million concurrent
connections.

A. Packet I/O
Several technologies have been developed for achieving

fast packet I/O on commodity hardware, such as DPDK
[1], netmap [26], and PF RING [22]. Of these technolo-
gies, the authors chose DPDK as the I/O infrastructure for
Janus. DPDK’s performance and stability as a fast user-
space packet I/O engine have been proven by researchers
and companies. Compared to netmap and PF RING,
DPDK supports more hardware and has a thriving com-
munity of users.

We crafted the original DPDK [1] to pipeline, so that
with Janus it is possible to separate packet I/O. Janus
separates packet I/O from TCP processing to obtain
three advantages. First, I/O threads can distribute packets
based on the destination port, which provides isolation
between different applications, e.g., running a web server
and a NoSQL store in different processes on the same
host. Second, with CSB, separate I/O threads can flexibly
distribute packets to processing threads, unlike multi-
queue NIC receive-side scaling (RSS [8]), which cannot
adjust dynamically. Third, users can easily enforce security
policies and debugging, e.g., dropping unusual packets or
tracking specific flows. The number of packet I/O threads
can be increased to handle more packets, so packet I/O
will not become a bottleneck.

B. Scheduling
For efficient TCP processing, we let the application and

TCP stack run in the same main loop so that they both
achieve better data locality.

Most modern web applications serve multiple clients
with each server thread through either (1) nonblock-
ing I/O or (2) asynchronous I/O. In scheme (1),
applications acquire file descriptor readiness notifications
through select or epoll. mTCP [14] implements a similar
interface at the user level. This causes overhead in terms of
extra memory copies and context switches, which would be
considerable for 40 million concurrent connections. Scheme
(2) is at a higher level of abstraction than nonblocking
I/O and requires breaking applications into several I/O-
triggered event handlers. IX [3] and SandStorm [18] both
adopt this model to avoid memory copies. Although asyn-
chronous I/O is efficient, its programming is complicated
and unnatural [27].

To provide applications with a concise interface, Janus
introduces the concept of coroutines to implement block-
ing I/O. Coroutines can yield the CPU to other eligible
tasks if a given condition does not hold, e.g., if a send
request cannot be promptly completed because there are
no available send buffers. When rescheduled, tasks resume
exactly where they left off; applications are not aware of
context switching; and they can be programmed with a
simpler blocking-style API.

The default stack size for a Linux program is 8MB.
With millions of concurrent connections, the memory con-
sumption that would be required for providing a separate
stack for each coroutine is far too huge. Fortunately, we’ve
noticed that web applications perform I/O operations
with a lower stack depth and that the exact stack size
for an inactive coroutine is small. For this reason, Janus
uses a shared stack model to achieve a high degree of
concurrency, with stacks copied into and out of an 8-MB
per-thread runtime stack. When a coroutine yields the
CPU, its current stack is saved in dynamically allocated
memory.

Programming languages like Go and Python have native
support for coroutines. Janus uses C and assembly instruc-
tions (ASM) to save and restore the application context;
context switching between coroutines is light-weight. With
a 1KB stack size, our coroutines cost 64 nanoseconds for
one resume/yield, which is twice as much as a function
call (33 nanoseconds). This will be further evaluated in
Section V. This cost can also be further amortized through
batching techniques like Linux’s New API (NAPI) [21].

In short, the coroutine scheduler promises to achieve
cache affinity and still provide a convenient API.

C. Consistent Stream Balancer
As Janus separates packet I/O from TCP/application

processing cores, load balancing is crucial for the scala-
bility of the data plane. The original DPDK and recent
approaches [11], [17] use RSS to distribute packets, but a

Packet I/O thread

Thread 0

Thread 1

Thread N

Traverse
Connection
Table

packets

CSB Control Plane

update

Set diff BF

TCP processing thread

Hdiff
n-1

Hnow
n-1

Hnow

n

Hdiff

n n

BF
n-1

Set
fly

n-1

Set
fly

n

T=True F=False

Fig. 2: The CSB Architecture. The control plane is under
the nth update, and the packet I/O plane distributes
packets with the n-1 th data structure.

fixed hash function is not very flexible. We designed a fine-
grained load balancing algorithm, the CSB, for dispatching
flows to different working cores based on consistent hash-
ing [15] and a Bloom filter [5]. As shown in Fig. 2, there
are three roles in the packet distribution process: packet
I/O threads, TCP processing threads, and a control plane
thread. The CSB allows the control plane to perform a
live reconfiguration of the load balancing hash function if
the connection distribution to the TCP processing threads
is unbalanced, and it still ensures that a single TCP
connection will always be handled by the same core. As in
the conventional consistent hash algorithm, the CSB works
by associating each thread ID (tid2) with a number of
randomly chosen points on the unit circle. Given a key, i.e.,
the 4-tuple associated with a packet3, the CSB hashes the
key to a position on the unit circle, proceeds from there in
a clockwise direction along the circle until it finds the first
neighboring point, and it returns the tid associated with
that point. The probability that a tid is chosen is equal
to the proportion of its related points. The control plane
keeps track of the load across TCP threads by monitoring
their receiving queue size, and if any thread is unbalanced,
its workload can be adjusted by adding/deleting points
associated with that thread to/from the circle. At this
point the problem becomes complicated, because resizing
the consistent hash may remap an old connection to a
different thread, and the old connection will be terminated
because it is not receiving any subsequent packets.

To address this problem, the CSB has two consistent
hash data structures, Hnow and Hdiff , a Bloom filter BF ,
and a set Setfly (for flying connection) to determine which
hash should be used for a packet. The nth update of CSB
is defined as follows:

2Each TCP processing thread is numbered with a value from 0 to
n-1, where n is the number of TCP processing threads

3The 4-tuple for a packet refers to a remote IP, a remote port, a
local IP, and a local port.

0

6

12

18

9

tid 3

tid 0

tid 1

tid 2

tid 2
8

20

tid 1

tid 3

Hdiff(a) (b)Hnow

n-1
Hnow

n n

Fig. 3: A CSB sample

tid points keys
0 6 1,3,4
1 12 7,8,10,11,12
2 18 13,15
3 0 20,21,22

TABLE II: A sample connec-
tion table

Step 1. If the control plane detects an imbalance, it adds
or deletes points in the current hash function
Hn−1

now to obtain a new hash function Hn
now, just

like the ordinary consistent hash algorithm.
Step 2. The control plane notifies the packet I/O thread

to use Hn
now to distribute TCP SYN packets

and record their 4-tuples in the set Setn
fly. The

packet I/O thread will determine whether a packet
belongs to a flying connection with Setn

fly, and if
so, it will be distributed with Hn

now. This allows
the CSB to adjust the workload without halting
the distribution of connections as it ensures the
consistency of flying connections.

Step 3. The control plane notifies each TCP process-
ing thread (tid=i) that it should traverse each
key of the thread’s connection table, Tablei. If
Hn

now (key) ̸= i, then it sets Add (BF n, key).
Step 4. Each TCP processing thread traverses Tablei

again, and if Query (BF n, key) is positive, then
(key, i) is added to the set Setdiff . In this way,
each existing connection that is affected by Hn

now

or is misidentified as affected due to a false pos-
itive from the Bloom filter BF n is collected in
Setdiff .

Step 5. The control plane sorts the keys in Setdiff in
ascending order. Sequential keys sharing the same
tid can be associated with the largest key, and
this is stored in Hn

diff . Thus, Hn
diff records

Setdiff in a compact manner.
Step 6. Hn−1

now and Hn−1
diff are replaced with Hn

now and
Hn

diff . The packet I/O thread shrinks the set
Setn

fly by eq. 1. In practice, Setn
fly stores about

100 keys for a 1000- milliseconds update, so this
is not a big burden.

Setn
fly = {key | key ∈ Setn

fly

∧ Query (BF n, key) is positive

∧ Hn
now (key) ̸= Hn

diff (key)}
(1)

We use the example in Figure 3 and Table II to illustrate
how the CSB works. There are 4 threads, and the key
space ranges from 0 to 23. Connections are distributed
using the Hn−1

now in Figure 3(a) (shaded circles) after nth
update. At the moment (Steps 1 and 2), thread 1 is
processing 5 connections, which is more than other threads
are processing, so the control plane decides to place a new
point at position 9 to port new connections to thread 2,

producing Hn
now, which is Figure 3(a) in its entirety. Given

Hn
now, keys 7 and 8 will be ported to thread 2, so (Step 3;

we will further discuss Step 2 below) the TCP thread sets
the Bloom filter to reflect this, i.e., it sets Add (BF n, 7)
and Add (BF n, 8). Assume that Query (BF, 20) is posi-
tive due to the Bloom filter’s false positive, so (Step 4)
Setdiff = {(7, 1) , (8, 1) , (20, 3)}. Because keys 7 and 8
are sequential in the sorted Setdiff and share the same
tid, as in Figure 3(b), they can be associated with point
8 alone (Step 5).

Turning back to Step 2, in the meantime, Setn
fly collects

4-tuples and keys for new coming connections, e.g, it
sets Setn

fly = {9, 19}. Assume that Query (BF n, 9) and
Query (BF n, 19) are both false positives. We use the eq.
1 and hashes in Figure 3 to shrink Setn

fly (Step 6):
1) Hn

now (9) = 2 and Hn
diff (9) = 3, so retain 9.

2) Hn
now (19) = Hn

diff (19) = 3, so remove 19.
Thus Setn

fly = {9}, and the adjustment is done.
The key insight here is based on the observation that al-

though the TCP processing threads have a per-connection
status, namely, the TCP connection table, these are in-
adequate for the packet I/O thread to query in real
time for severe cache misses and lock contention. Another
advantage of the CSB is that the mapping of a key to
a tid is determined by finding points on the unit circle,
most numerical neighboring keys are related to the same
tid, and streams will be closed as time elapses. Therefore,
the CSB can construct a compact Hdiff to record massive
key-tid mappings in a compact manner.

For an active open connection from thread tid, the
source port is selected by testing the 4-tuple with tid =
CSB (4 − tuple). This is intended to allow the application
to give up its freedom to use a specific port in exchange
for connection locality.

IV. Implementation Details

Janus is in full compliance with standards RFC 793
and RFC 1122 and supports TCP options (RFC 7323),
as well as time stamps, selective ACKs, and congestion
control. We tested its conformance to the RFCs using
packetdrill [6], which is an open-source scripting tool
that enables testing the correctness and performance of
entire network stack implementations.

In Janus, each connection has a 544-byte TCP Control
Block (TCB). Running an application in the same thread
with the TCP stack can greatly reduce the per-connection
memory cost. The benefits are twofold. On the one hand,
Janus uses a per-thread buffer pool (huge pages that are
organized by rte ring) to receive data from the NIC, so
that per-connection receive buffers are unnecessary. On the
other hand, each thread has only one active coroutine at
any given time, so there is no need for the idle connection
to reserve a send buffer. As a result, each idle connection
only costs around 600 bytes, so the total consumption for
40 million connections is 24GB.

The CSB’s consistent hash is implemented with a sorted
array of (point, bucket) pairs. The bucket corresponding
to a given key value is located through a binary search.
The key values are truncated to 32 bits to save space.
Unlike the classic Red-Black Tree implementation, the
sorted array does not support dynamic updates efficiently:
in order to change the number of buckets, the entire data
structure must be rebuilt. But it is more compact (8 bytes
per point per bucket), and rebuilding is not a big deal,
for it is processed in the control plane. The CSB’s Bloom
filter is implemented with the Murmur hash function [2].

DPDK’s rte mbuff, which is used to is also modified
to store per-packet metadata such as a SACK flag and
resend times. The metadata reside in the same continuous
memory as the packet descriptor, which Janus can access
efficiently.

V. Evaluation
In this section, we first present micro-benchmarks for

the CSB and coroutines. Then we evaluate Janus’s perfor-
mance and compare it with CentOS 7.44 (kernel 3.10.0)
and mTCP5 v2.0.

All benchmarks were conducted on two Dell PowerEdge
R730 servers, each of which has two Intel Xeon CPUs,
E5-2698 v3 @ 2.3-3.6GHz (16 cores, hyper-thread ON),
128GB DDR3 2133Mhz memory, and two Intel 82599ES
dual-port 10Gb Ethernet adapters (4x10GE). The servers
run CentOS 7.4 (kernel 3.10.0).

A. Micro-Benchmarks
This section presents the micro-benchmark results for

our CSB mechanism and coroutine implementations.
1) CSB Benchmark: We present the CSB’s adjustment

time and lookup speed for different numbers of concurrent
streams. More concurrent streams will cost more adjust-
ment time for building Hdiff and BF . The CSB’s Bloom
filter was set with a false positive rate of 0.0001. For
the consistent hash algorithm, more points per bucket
will have a smaller deviation but induce a greater time
complexity. We measure the deviation by computing the
standard error of the fraction of hash values assigned to
each bucket. To simulate massive streams, we generate
streams with randomly generated 4-tuples and assign 32
packets to each stream. Then we generate a hash key for
each 4-tuple with RSS. Table III shows the evaluation
results for the key lookup and adjustment times. The CSB
is set to 16 buckets (TCP processing threads), 16 points
per bucket, and uses a 1-packet I/O core.

2) Coroutine Benchmark: We wanted to measure the
relative overhead of coroutines compared to function calls
(callbacks). First, we needed to determine the C language
function call overhead as a baseline. Using a 1KB stack
with random data, the overhead was constant in the

4CentOS 7.4 supports SO REUSEPORT and was the latest CentOS
release at the time of experiment.

5mTCP is currently one of the most advanced user-level stacks.

TABLE III: Performance of CSB for different numbers of
concurrent streams

Concurrent
Streams

Lookup
Speed

Adjustment
Time (ms)

Standard
Error

1,000,000 14.4M key/sec 180 5%
4,000,000 12.8M key/sec 400 5%
10,000,000 11.2M key/sec 1281 6%
20,000,000 9.8M key/sec 2399 5%

recursion depth and took 32 ns on our server. Then we
tested the yield and resume costs with various numbers
of concurrent coroutines. With a 1KB stack size, the
overhead of our coroutine implementation was about twice
as much as for the C function call, and it was nearly
invariable for the number of concurrent coroutines. We
believe that such overhead could be amortized by batching
at the application level.

B. Experimental Setup
We implemented three similar simple HTTP servers

with Janus API, mTCP API, and socket API to compare
their performance. The HTTP server receives an HTTP
request and responds with a variable-sized message.

We used an IXIA traffic generator [13] to initiate mas-
sive HTTP requests, and the server responses with a
fixed message. The Maximum Transmission Unit (MTU)
was set to 1500 bytes. To simulate a real production
environment, different from the experiment setup in [14],
established connections were gracefully terminated with
the FIN flag set to 1. For Linux, we changed the kernel’s
default parameters to unleash its performance, e.g., we
stopped firewalld, shrank the TCP buffer size, increased
fs.nr open6, and so on. In all test cases, Janus used 8
CPU cores (for Janus, 1 packet I/O and 7 TCP processing
cores) and 64-byte messages per connection, unless other-
wise specified.

C. Scalability on Multicore Systems
Figure 4 shows that Janus scales almost linearly with the

number of CPU cores. Since mTCP’s number of threads
is limited by the RSS queues, we needed to modify its I/O
engine to support more cores. Without loss of generality,
the comparison ends with 8 CPU cores.

Janus’s connection per second (cps) rate is lower than
that of the other approaches for 2 cores, for there is only
1 core processing TCP and 1 doing packet I/O. However,
when more cores are added, Janus outperforms the other
approaches.

Then we added more cores to explore Janus’s scalability
limitations. We can see in Figure 5 that Janus scales
linearly until 14 cores are reached. Then the cache miss
rate reaches nearly 50%, which causes performance degen-
eration. The share-nothing architecture was able to avoid

6The maximum number of socket descriptors per process, which
we set to 20,000,500.

2 4 6 8
Number of CPU Cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
nn

ec
tio

ns
/s

ec
 (M

illi
on

)
SO_REUSEPORT
mTCP
Janus

Fig. 4: Comparison of connection accept throughputs.

2 4 6 8 10 12 14 16
Number of CPU Cores

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
nn

ec
tio

ns
/s

ec
 (M

illi
on

)

30

35

40

45
Ca

ch
e

M
iss

es
 %

cache misses rate

Fig. 5: Scale to 16 CPU cores.

data structure access contentions. However, the ultimate
ceiling for multicore scalability was determined by the
shared L3 cache.

D. Throughput
Figure 6 shows the throughput for varying message

sizes. The connection is closed immediately after the
message transmission. Janus’s performance improvement
is noticeable for all message sizes. All approaches were
able to achieve 10 Gbps for a 4KB message size. Janus
was able to reach 35.49Gbps for 8KB message sizes, which
is twice that of the other approaches. When augmented to
10 cores, Janus could saturate a 40Gbps link with an 8KB
message size.

E. Concurrency
To several protocols use long connection, such as

HTTP/2 and WebSocket, Janus was optimized for massive
concurrency. We initiated a specific number of connections
that did not close so that we could evaluate the concur-
rency with the connection establishment speed.

Figure 7 shows the cps for different numbers of concur-
rent connections; all approaches were able to maintain a

64B 256B 1K 2K 4K 8K
Message Size

0

5

10

15

20

25

30

35

Gb
ps

SO_REUSEPORT
mTCP
Janus

Fig. 6: Bandwidth for different message sizes; all ap-
proaches use 8 cores.

1 2 4 10 20 30 40
Connections (Million)

0.0

0.5

1.0

1.5

2.0

2.5

Co
nn

ec
tio

ns
/s

ec
 (M

illi
on

)

Janus
mTCP
SO_REUSEPORT

Fig. 7: The connection establishment speed varies with the
number of concurrent connections.

stable acceptance speed. However, the test of Linux was
aborted at 10 million concurrent connections, for the OS
became stuck and unable to proceed any further. mTCP
run out of memory at 20 million concurrent connections.
Janus was still able to maintain a reasonably high cps (1.48
million) with 40 million concurrent connections. This can
be attributed to the compact data structure and share-
nothing architecture. In other words, partitioning the TCP
connection table enables threads to look up packets in
parallel.

F. Latency
Traditionally, there is a trade-off between throughput

and latency. In order to achieve higher throughput, Janus
processes packets in batches, which is made possible with
the DPDK PMD. In addition, the pipeline between packet
I/O threads and TCP processing threads could introduce
further latency. We measured the three-way handshake
latency [7], as shown in Figure 8. Under a workload of
0.8 million cps, both mTCP and Linux endured a severe
packet loss, so beyond that speed, only the results for

0.1 0.2 0.4 0.8 1.2
Connections/sec (Million)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
La

te
nc

y(
m

s)

SO_REUSEPORT
Janus
mTCP

Fig. 8: Three-way handshake latency.

Janus are shown. At 0.1 million cps, Janus’s connection
latency was much higher than Linux’s and mTCP’s. Owing
to its batch processing, Janus’ latency is lower when more
connections are accepted, and it achieves a latency of
0.23 milliseconds at 1.2 million cps. We believe that one
possible optimization in this case would be to adjust the
batch sizes dynamically [19].

VI. Conclusion
In this paper, we have proposed a highly scalable TCP

stack to serve massive numbers of concurrent TCP con-
nections. In addition to existing optimization techniques,
Janus separates I/O cores from processing cores and lets
applications run as per-connection coroutines in the packet
processing threads. This design choice greatly improves
data locality, memory efficiency, and programming flexi-
bility. We have also proposed a novel TCP load balancing
algorithm, the Consistent Stream Balancer, which com-
bines a Bloom filter and consistent hashing to allow live
reconfiguration of the load-balancing hash function if the
flow distribution to the cores is unbalanced. Our evalua-
tions show that Janus can accept 1.86 million connections
per second while maintaining 40 million concurrent con-
nections. Moreover, Janus outperforms Linux 3.10.0 and
mTCP by 3.9 and 1.8 times, respectively.

VII. Acknowledgement
The authors would like to thank the anonymous review-

ers for their valuable comments and helpful suggestions.
This work is supported by National Key R&D Program of
China (Grant NO. 2016YFB0801300).

References
[1] Data plane development kit. http://www.dpdk.org/, 2014.
[2] A. Appleby. Murmurhash 2.0, 2008.
[3] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis,

and E. Bugnion. Ix: A protected dataplane operating system
for high throughput and low latency. In Proceedings of the
11th USENIX Symposium on Operating System Design and Im-
plementation (OSDI), number EPFL-CONF-201671. USENIX,
2014.

[4] M. Belshe, M. Thomson, and R. Peon. Hypertext transfer
protocol version 2 (http/2). 2015.

[5] B. H. Bloom. Space/time trade-offs in hash coding with allow-
able errors. Communications of the ACM, 13(7):422–426, 1970.

[6] N. Cardwell, Y. Cheng, L. Brakmo, M. Mathis, B. Raghavan,
N. Dukkipati, H.-k. J. Chu, A. Terzis, and T. Herbert. packet-
drill: Scriptable network stack testing, from sockets to packets.
In USENIX Annual Technical Conference, pages 213–218, 2013.

[7] N. Cardwell, S. Savage, and T. Anderson. Modeling tcp latency.
Proceedings - IEEE INFOCOM, 3:1742 – 1751, 2000.

[8] M. Corp. Receive side scaling. http://msdn.microsoft.com/
library/windows/hardware/ff556942.aspx, 2014.

[9] I. Fette. The websocket protocol. 2011.
[10] R. Graham”. ”the secret to 10 million concurrent connections-

the kernel is the problem, not the solution”. 2013.
[11] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy. Megapipe:

A new programming interface for scalable network i/o. In OSDI,
pages 135–148, 2012.

[12] M. Honda, F. Huici, C. Raiciu, J. Araujo, and L. Rizzo.
Rekindling network protocol innovation with user-level stacks.
ACM SIGCOMM Computer Communication Review, 44(2):52–
58, 2014.

[13] IXIA. Ixia breakingpoint. https://www.ixiacom.com/products/
breakingpoint, 2013.

[14] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park. mtcp: a highly scalable user-level tcp stack for
multicore systems. In NSDI, pages 489–502, 2014.

[15] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world
wide web. In Proceedings of the twenty-ninth annual ACM
symposium on Theory of computing, pages 654–663. ACM, 1997.

[16] M. Kerrisk. The so reuseport socket option. https://lwn.net/
Articles/542629/, 2013.

[17] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y. Shi.
Scalable kernel tcp design and implementation for short-lived
connections. In ACM SIGPLAN Notices, volume 51, pages 339–
352. ACM, 2016.

[18] I. Marinos, R. N. Watson, and M. Handley. Network stack
specialization for performance. In ACM SIGCOMM Computer
Communication Review, volume 44, pages 175–186. ACM, 2014.

[19] J. C. McCullough, J. Dunagan, A. Wolman, and A. C. Snoeren.
Stout: An adaptive interface to scalable cloud storage. In Proc.
of the USENIX Annual Technical Conference–ATC, pages 47–
60, 2010.

[20] MigratoryData. Migratorydata server. http://migratorydata.
com/, 2016.

[21] L. NAPI. https://wiki.linuxfoundation.org/networking/napi,
2016.

[22] ntop. Pf ring zero copy. http://www.ntop.org/products/
packet-capture/pf ring-zc-zero-copy/, 2015.

[23] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Im-
proving network connection locality on multicore systems. In
Proceedings of the 7th ACM european conference on Computer
Systems, pages 337–350. ACM, 2012.

[24] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishna-
murthy, T. Anderson, and T. Roscoe. Arrakis: The operating
system is the control plane. ACM Transactions on Computer
Systems (TOCS), 33(4):11, 2016.

[25] R. Reed. Scaling to millions of simultaneous connections. Erlang
Factory SF, 2012.

[26] L. Rizzo. Netmap: a novel framework for fast packet i/o. In 21st
USENIX Security Symposium (USENIX Security 12), pages
101–112, 2012.

[27] J. R. Von Behren, J. Condit, and E. A. Brewer. Why events
are a bad idea (for high-concurrency servers). In HotOS, pages
19–24, 2003.

[28] K. Yasukata, M. Honda, D. Santry, and L. Eggert. Stackmap:
Low-latency networking with the os stack and dedicated nics.
In 2016 USENIX Annual Technical Conference (USENIX ATC
16), Denver, CO, 2016.

